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The effect of insoluble surface and interfacial surfactants on the inertialess instability
of a two-fluid film flow down an inclined plane is investigated based on a normal
mode analysis. The results reveal that the inertialess instability of relatively long
waves can be predominantly weakened by a surface surfactant and enhanced by an
interfacial surfactant. For sufficiently large viscosity ratio of the upper layer to the
lower one, a destabilizing influence of the surface surfactant is also detected; this is
thus a rare example demonstrating the possible destabilizing effect of the surfactant
on the flow with a free surface. When the upper layer is less viscous and hence
the instability due to the viscosity stratification disappears, a new instability can be
triggered by the presence of an interfacial surfactant. Both the surfactants on the
surface and the interface can stabilize or destabilize the short-wave instabilities, which
occur for negligible surface and interfacial tensions.

1. Introduction
The gravity-driven flow of multiple-layer liquid films down an inclined plane is of

considerable interest in fundamentals and applications. For example, a two-layer flow
can be regarded as an elementary component in the coating processes encountered
in the manufacturing of photographic films (Weinstein & Ruschak 2004). Instabilities
of such a flow in the form of travelling surface and interfacial waves may lead to
undesirable variations of the film thickness. In addition, most interfacial flows are
accompanied by surface-active agents or surfactants, which usually play a critical role
on flow stability. Thus, it is desirable to explore the stability of the multiple-layer
flows and relevant influences of the surfactants.

The multiple-layer flows with a free surface can exhibit instability in the form of
travelling waves. This type of instability does not need the support of fluid inertia and
occurs even in the limit of Stokes flow; thus it is referred to as inertialess instability.
This feature is different from the long-wave instability of a single-layer film, in which
the inertia plays an important role in triggering the instability (Benjamin 1957; Yih
1963). Based on extensive studies, inertialess instabilities are encountered in two-layer
flows (Kao 1968; Loewenherz & Lawrence 1989; Chen 1993) and a variety of flows
with a configuration of more than two layers (Wang, Seaborg & Lin 1978; Weinstein &
Kurz 1991; Weinstein & Chen 1999; Pozrikidis 2004). Nonlinear evolutions of
the inertialess instability of multiple flows have been studied by Kliakhandler &

† Author to whom correspondence should be addressed: xlu@ustc.edu.cn



496 P. Gao and X.-Y. Lu

Sivashinsky (1997) and Kliakhandler (1999) using a weakly nonlinear analysis and
by Jiang et al. (2005) based on both numerical simulations and experiments.

Two-layer film flow has attracted much attention from workers owing to its
simplicity and rich dynamics, even though film flows with multiple layers (more than
two) are quite common in applications. Therefore, we focus mainly on two-layer film
flow in the following. A linear stability of two-layer clean falling films with different
viscosities and densities under a long-wave approximation was first investigated by
Kao (1968). Two modes associated with the wave motions of the surface and interface
are identified. The interface mode is unstable even at zero Reynolds number for the
case of a more viscous upper layer. Loewenherz & Lawrence (1989) carried out a
finite-wavelength stability analysis of the flow with matched densities and negligible
surface/interfacial tension in the limit of Stokes flow, and focused on the role of
viscosity stratification. They found that the flow is unstable and the most dangerous
mode has a finite wavelength for the less viscous layer adjacent to the wall, whereas
an inverse flow configuration is stable for all wavenumbers. Chen (1993) extended
the stability analysis to include inertial effects and dealt with the effects of surface
and interfacial tensions on the flow stability. Hu et al. (2006) performed an inertialess
spatio-temporal stability analysis of the flow with combined effects of density and
viscosity stratification. In addition, Jiang, Helenbrook & Lin (2004) revealed the
important role of the interfacial shear work in the inertialess instability based on an
energy budget approach.

The presence of an insoluble surfactant may have either a stabilizing or a
destabilizing influence on the stability of interfacial flows. For a single-layer film
flow with a free surface, the insoluble surfactants are stabilizing so that the critical
Reynolds number increases (Whitaker & Jones 1966; Lin 1970; Blyth & Pozrikidis
2004a; Gao & Lu 2006). However, Wei (2005a , 2007) revealed that a single fluid
film with an additional surface shear may also be destabilized by introducing an
insoluble surfactant. For a two-fluid channel flow with a non-zero interfacial shear,
an insoluble surfactant can induce an instability even in the limit of Stokes flow
(Frenkel & Halpern 2002; Halpern & Frenkel 2003; Blyth & Pozrikidis 2004b). The
underlying mechanism of the surfactant-induced instability was proposed by Wei
(2005b) based on the viewpoint of vorticity. Destabilization of the core–annular flow
was also studied by Wei, Halpern & Grotberg (2005).

Although the effect of insoluble surfactants on the flows with a single surface or
interface has been widely studied and well understood, the effect of surfactants on
multiple-layer films remains unclear. The purpose of the present work is to study
the stability of the surfactant-laden two-fluid falling film, which consists of both a
zero-shear surface and a non-zero-shear interface.

2. Flow configuration and the stability problem
Consider the gravity-driven film flow of two-fluid layers down an inclined plane

which is tilted at an angle θ with respect to the horizontal direction (figure 1). The
fluids are assumed to be incompressible and Newtonian. The upper layer is occupied
by fluid 1 with mean thickness d1 and dynamic viscosity µ1 and is adjacent to the
passive air, and the lower layer by fluid 2 with mean thickness d2 and viscosity µ2. For
simplicity, the densities of both fluids are matched and denoted by ρ. Let h1(x

∗, t∗)
and h2(x

∗, t∗) be the departures of the perturbed fluid–air surface and fluid–fluid
interface from their mean locations, where t∗ is time. Here and below we use an
asterisk to denote dimensional quantities. Both the free surface and the interface are
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Figure 1. Schematic illustration of the two-layer flow down an inclined plane with
surfactants.

covered by a monolayer of insoluble surfactants with concentrations Γ ∗
1 (x∗, t∗) and

Γ ∗
2 (x∗, t∗), leading to variations of the surface tension γ ∗

1 (x∗, t∗) and the interfacial
tension γ ∗

2 (x∗, t∗), respectively.
We assume the inertia of the fluid flow is negligible so that the governing equations

for the motion of the flow are the Stokes equation and the continuity equation

−∇∗p∗
j + µj ∇∗2u∗

j + ρg = 0, ∇∗ · u∗
j = 0, (2.1)

where ∇∗ = (∂/∂x∗, ∂/∂y∗), u∗
j = (u∗

j , v
∗
j ) is the fluid velocity, p∗

j is the pressure and g
is the acceleration due to gravity. The subscripts j = 1 and 2 refer to the upper and
lower fluid layer, respectively.

At the rigid wall (y∗ = − d2), the no-slip boundary condition, i.e. u∗ = 0, is employed.
At the free surface (y∗ = d1 +h∗

1), the dynamic condition requiring the balance among
the hydrodynamic traction, the surface tension and the Marangoni traction is

σ ∗
1 · n1 + (γ ∗

1 ∇∗ · n1)n1 − 1

H1

∂γ ∗
1

∂x∗ t1 = 0, (2.2)

where H1 =
√

1 + (∂h∗
1/∂x∗)2, σ ∗

1 is the stress tensor, n1 is the unit normal vector
pointing to the air, and t1 is the unit tangential vector pointing to the direction of
increasing x∗. At the interface between the fluids (y∗ = h2), the velocity should be
continuous, i.e. u∗

1 = u∗
2, and the dynamic condition has the form

(σ ∗
1 − σ ∗

2) · n2 − (γ ∗
2 ∇∗ · n2)n2 +

1

H2

∂γ ∗
2

∂x∗ t2 = 0, (2.3)

where H2 =
√

1 + (∂h∗
2/∂x∗)2, n2, pointing to fluid 1, and t2 are the unit vectors normal

and tangential to the interface. In addition, we apply the kinematic condition

∂h∗
j

∂t∗ + u∗
j

∂h∗
j

∂x∗ = v∗
j (2.4)

at the free surface and the interface.
The concentrations of the insoluble surfactants, Γ ∗

j (x∗, t∗), are governed by
a convection–diffusion equation (e.g. Halpern & Frenkel 2003), which for the
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one-dimensional case can be written as

∂(HjΓ
∗
j )

∂t
+

∂

∂x∗ (HjΓ
∗
j u∗

j ) = Dsj

∂

∂x∗

(
1

Hj

∂Γ ∗
j

∂x∗

)
, (2.5)

where Dsj is the surfactant diffusivity. In practice, the surfactant diffusivity is typically
negligible, so that we only account for the convection effect and take Dsj = 0. Since
we are concerned with infinitesimal perturbations for the linear stability problem,
the relation between the surfactant concentrations Γ ∗

j and the surface or interfacial
tensions γ ∗

j can be approximated as

γ ∗
j − γj0 = −Ej (Γ

∗
j − Γj0), (2.6)

where Ej is the surfactant elasticity, and Γj0 is the basic value of the surfactant
concentration, corresponding to the uniform surface or interfacial tension γj0.

Following Loewenherz & Lawrence (1989), we use the mean thickness of the lower
layer, d2, as the scale of length, and define the velocity scale as Û = ρgd2

2 sin θ/µ2.
The characteristic time and pressure are d2/Û and µ2Û/d2, respectively. The surface
and interfacial tensions as well as the surfactant concentrations are scaled by their
basic values. In the basic state, the surface and the interface are flat, corresponding
to uniform surfactant concentrations and surface tensions. The dimensionless velocity
profile driven by gravity has the form

U1(y) = m−1
(
δy − 1

2
y2

)
+ δ + 1

2
for 0 � y � δ, (2.7)

U2(y) = δy − 1
2
y2 + δ + 1

2
for − 1 � y � 0, (2.8)

where m =µ1/µ2 and δ = d1/d2 are, respectively, the ratios of viscosities and
thicknesses of the two layers. The basic pressure distributions are given by

P1(y) = P2(y) = (δ − y) cot θ. (2.9)

To study the linear stability of the basic state, the perturbed flow is decomposed into

(uj , vj ) = (Uj, 0) + (u′
j , v

′
j ), (2.10)

(pj , γj , Γj ) = (Pj , 1, 1) + (p′
j , γ

′
j , Γ

′
j ). (2.11)

Here a prime is used to denote perturbation qualities. Since only two-dimensional
perturbations are considered, the continuity equations allow us to introduce the
disturbance streamfunctions ψ ′

j , related to the velocity perturbations (u′, v′) as
u′

j = ∂ψ ′
j /∂y, v′

j = − ∂ψ ′
j /∂x. Further, since the basic state is independent of x, the

disturbances can be assumed to have the form of normal modes as⎡
⎢⎢⎢⎢⎣

ψ ′
j (x, y, t)

p′
j (x, y, t)

γ ′
j (x, t)

Γ ′
j (x, t)

hj (x, t)

⎤
⎥⎥⎥⎥⎦ = ε

⎡
⎢⎢⎢⎢⎣

φj (y)

qj (y)

ζj

ξj

ηj

⎤
⎥⎥⎥⎥⎦ eik(x−ct) + c.c., (2.12)

where c.c. denotes the complex conjugate, ε � 1 is the infinitesimally small amplitude
of the perturbations, k is a real streamwise wavenumber, and c = cr + ici is the
complex phase velocity of the disturbance wave.

Substituting the perturbations (2.12) into the dimensionless form of the governing
equations (2.1), linearizing by retaining only the linear terms in ε, and eliminating the
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pressures, we have the Orr–Sommerfeld equations in the limit of Stokes flow

(D2 − k2)2φj = 0, (2.13)

for j = 1, 2, where D= d/dy.
The no-slip boundary conditions at the rigid wall can be expressed in terms of φ as

φ2 = 0, Dφ2 = 0 at y = −1. (2.14)

The linearized versions of the boundary conditions at the free surface and the interface
can be obtained by Taylor expanding the exact conditions in powers of hj around
their mean positions and then retaining the leading-order terms. At the fluid–fluid
interface, the linearized boundary conditions associated with the continuity of the
velocity and the dynamic conditions can be written as

η2DU1 + Dφ1 = η2DU2 + Dφ2, (2.15)

φ1 = φ2, (2.16)

m(D2 − 3k2)Dφ1 = (D2 − 3k2)Dφ2 − Ca−1
2 ik3η2, (2.17)

m(D2 + k2)φ1 − (D2 + k2)φ2 = Ma2Ca−1
2 ikξ2, (2.18)

at y = 0. The dynamic conditions at the free surface become

ikη1DP1 + m(D2 − 3k2)Dφ1 = Ca−1
1 ik3η1, (2.19)

η1D
2U1 + (D2 + k2)φ1 = −Ma1m

−1Ca−1
1 ikξ1, (2.20)

at y = δ. Finally, the linearized kinematic conditions and transport equations for the
surfactants are

(U1 − c)η1 + φ1 = 0 at y = δ, (2.21)

(U2 − c)η2 + φ2 = 0 at y = 0, (2.22)

(U1 − c)ξ1 + Dφ1 = 0 at y = δ, (2.23)

(U2 − c)ξ2 + η2DU2 + Dφ2 = 0 at y = 0. (2.24)

The additional four dimensionless numbers involved in the dynamic boundary
conditions are defined as Maj = EjΓj0/γj0 and Caj = µjÛ/γj0. Here, the parameters
Maj are the Marangoni numbers, expressing the sensitivity of the surface and
interfacial tensions on the surfactant concentrations, and Caj are the capillary
numbers.

The general solutions to (2.13) have the form

φj (y) = Aj cosh ky + Bj sinh ky + Cjy cosh ky + Djy sinh ky, (2.25)

where the coefficients Aj , Bj , Cj and Dj are to be determined. Upon substituting
them into the boundary conditions (2.16) to (2.24), we obtain a homogeneous linear
system, which can be written in the matrix form

M · w = 0, (2.26)
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where w = (A1, B1, C1, D1, A2, B2, C2, D2, η1, η2, ξ1, ξ2)
T is the unknown vector, and

the coefficient matrix M is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 Ck

0 0 0 0 −kSk

0 k 1 0 0
1 0 0 0 −1
0 m 0 0 0

km 0 0 m −k

2imk2Skδ 2imk2Ckδ 2imk2δSkδ 2imk2δCkδ 0
2k2Ckδ 2k2Skδ 2k2δCkδ + 2kSkδ 2kCkδ + 2k2δSkδ 0

Ckδ Skδ δCkδ δSkδ 0
0 0 0 0 1

kSkδ kCkδ Ckδ + kδSkδ kδCkδ + Skδ 0
0 0 0 0 0

−Sk −Ck Sk 0 0 0 0
kCk Ck + kSk −kCk − Sk 0 0 0 0

−k −1 0 0
δ

m
− δ 0 0

0 0 0 0 0 0 0

−1 0 0 0 − ik

2Ca2

0 0

0 0 −1 0 0 0 − iMa2

2Ca2

0 0 0 − cot θ − k2

Ca1

0 0 0

0 0 0 − 1

m
0

ikMa1

mCa1

0

0 0 0 Us − c 0 0 0
0 0 0 0 Ui − c 0 0
0 0 0 0 0 Us − c 0
k 1 0 0 δ 0 Ui − c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Ck = cosh k, Sk = sinh k, Ckδ = cosh kδ, Skδ = sinh kδ, and Us , Ui are the
dimensionless basic velocities at the unperturbed surface and interface, respectively.
A non-trivial solution of the system (2.26) exists if and only if the determinant
of the 12 × 12 matrix M vanishes, which yields a dispersion relation between the
wavenumber and the phase velocity for specified values of other parameters, given by

F (k, c; m, δ, Ma1, Ma2, Ca1, Ca2) = 0. (2.27)

Since c appears only in the last four rows of M, the dispersion relation (2.27) is a
quartic equation for c, which is presented in the Appendix available as a supplement
to the online version of this paper. Thus, we obtain four travelling-wave modes of the
stability of the flow corresponding to the four roots of the dispersion relation. Two of
the modes are associated with the deformation of the surface and the interface, which
have been extensively investigated in previous studies (Kao 1968; Loewenherz &
Lawrence 1989; Chen 1993; Hu et al. 2006), while the other two modes are related
to the presence of the insoluble surfactants.



Effect of surfactants on the stability of two-layer film 501

3. Results and discussion
In the absence of surfactants (i.e. Ma1 = Ma2 = 0), the last two rows and columns

of M are irrelevant to the dynamics, and the flow admits only two normal modes.
The growth rates of the unstable modes obtained are in excellent agreement with
the known results (Loewenherz & Lawrence 1989; Chen 1993; Hu et al. 2006) for
uncontaminated flows. Further, according to Blyth & Pozrikidis (2004a), the phase
velocity of long-wave perturbations (k � 1) in the limit of Stokes flow for a single-
layer falling film is given by

c = (δ + 1)2 − ik

[
1
3
(δ + 1)3 cot θ +

Ma1

Ca1

(δ + 1)

]
+ O(k2). (3.1)

To examine the reliability of the results in the presence of surfactant, calculations were
performed for m = 1, Ma1 > 0, Ma2 = 0 and Ca2 = ∞, corresponding to a surfactant-
laden single-layer film flow; the values of c obtained by the present method agree well
with the asymptotic predictions (3.1). To check the results for general parameters, the
long-wave stability analysis has also been performed. By using a standard asymptotic
procedure in the limit of k → 0, as in Kao (1968), we obtain an eigenvalue problem
for the long-wave instability

N · s = cs, (3.2)

where s = (h1, h2, ξ1, ξ2)
T and

N =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2Us −
(

δ3

3m
+ δ2 + δ + 1

3

)
ik cot θ δ2

(
1 − 1

m

)
−mUsM1ik −UiM2ik

1
2

−
(

δ

2
+ 1

3

)
ik cot θ Ui − 1

2
mM1ik − 1

2
M2ik(

δ

m
+ 1

)
− Us ik cot θ δ

(
1 − 1

m

)
Us − (δ + m)M1ik −M2ik

1 − Ui ik cot θ δ −mM1ik Ui − M2ik

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with M1 =Ma1/Ca1 and M2 = Ma2/Ca2. Again, the results obtained by (2.27) for
small k and arbitrary m are in excellent agreement with those predicted by the
asymptotic procedure. By setting m =1 and M2 = 0, it can be proved that (3.1) is
an eigenvalue of (3.2) as expected. However, since there are four degrees of freedom
for general conditions instead of two as in the single-fluid surfactant problem, the
phase velocity of long waves cannot be presented in forms as simple as (3.1). In
addition, note that considering only the limit of long waves is insufficient to resolve
the complete stability characteristics of the flow, which will be discussed below.

Based on our extensive calculations, at most one of the four modes may be
unstable for a group of specified flow parameters. Here, we focus on the behaviour
of the unstable modes and investigate their dependence on the surface and interfacial
surfactants.

We first consider the case in which the free surface is covered by an insoluble
surfactant while the interface remains clean. Figure 2 shows the variation of the
growth rates kci of the unstable modes as a function of k for δ = 1, Ca1 = Ca2 = 1,
Ma2 = 0, θ =0.2 and different values of Ma1. For m < 1, no instability occurs and the
relevant results are not shown. Here, the viscosity ratio is typically chosen as m = 2.5
(figure 2a) and m =50 (figure 2b). Since the upper layer is more viscous than the lower
layer, the flow is unstable in the absence of surfactant. For m =2.5, it can be seen
from figure 2(a) that the effect of surface surfactant is twofold. On the one hand, the
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Figure 2. Effect of the surface surfactant on the stability for δ = 1, Ca1 = Ca2 = 1, Ma2 = 0,
θ =0.2 and various values of Ma1: (a) m= 2.5; (b) m= 50.

bandwidth of the unstable wavenumber is narrowed by the presence of surfactant;
on the other hand, the maximum growth rate decreases monotonically with Ma1

though the growth rates in very long waves are increased, and the corresponding
wavelengths are shifted to the long-wave range. Hence the effect of the surface
surfactant is stabilizing, consistent with previous findings in a single-fluid film flow
(e.g. Blyth & Pozrikidis 2004a). As Ma1 → ∞, the maximum growth rate tends to zero
owing to the surface immobilization. However, the inertialess instability cannot be
fully eliminated though it is significantly weakened, since the sufficiently long waves
are always unstable for all non-zero Ma1.

For a much larger viscosity ratio m =50, as shown in figure 2(b), the dependence
of the maximum growth rate on Ma1 exhibits a non-monotonic behaviour. As Ma1 is
raised from zero, the range of unstable wavenumbers is widened and the growth rates
of the mode are significantly increased. Thus, the inertialess instability of the flow
is enhanced by the presence of the surface surfactant. Beyond a threshold Ma1 ∼ 20,
the growth rates begin to decrease and the unstable interval of k becomes smaller
and smaller with increasing Ma1. Because of the surface immobilization, the growth
rates eventually tend to zero and hence the effect of surfactant is stabilizing for
sufficiently large Ma1 (e.g. Ma1 = 1000). Note that the destabilizing influence of the
surface surfactant on the stability of the flow at large viscosity ratio is a new finding,
when considering the zero shear of the basic flow at the surface, since it is well known
that surfactant plays an stabilizing role on the stability of a surfactant-laden free-
surface flow. This behaviour should be because the unstable mode originates from
the so-called interface mode at Ma1 = 0, which is associated with the local dynamics
near the interface, instead of the free surface. Hence, the introduction of an insoluble
surface surfactant may be destabilizing.

Effects of the interfacial surfactant on the stability of the flow are shown in figure 3.
The growth rate of the dominant mode for m = 2.5, δ =1, Ca1 = Ca2 = 1, Ma1 = 0,
θ = 0.2 and various values of Ma2 are shown in figure 3(a). The dependence of the
growth rates on the interfacial surfactant is similar to that on the surface surfactant
shown in figure 2(b). The main difference is that the variation of the growth rates is
more sensitive to Ma2, since the inertialess instability is associated with the presence of
the interface, as discussed above. It is clear that the inertialess instability is enhanced
by the interfacial surfactant for small and moderate values of Ma2 and weakened for
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Figure 3. Effect of the interfacial surfactant on the stability for δ = 1, Ca1 =Ca2 = 1,
Ma1 = 0, θ =0.2 and various values of Ma2: (a) m= 2.5; (b) m= 0.4.

sufficiently large Ma2 owing to the interface immobilization. The destabilizing effect
of the interfacial surfactant is also relevant to the surfactant-induced instability of a
two-layer channel flow found by Frenkel & Halpern (2002) and Halpern & Frenkel
(2003), which occurs for a non-zero interfacial shear, as in the present case.

When a more viscous layer is adjacent to the plate, i.e. m < 1, the inertialess
instability disappears if the interface is clean. By introducing an interfacial surfactant,
an additional mode occurs and dominates the stability. The growth rates of the
unstable mode are shown in figure 3(b) for m =0.4 and various values of Ma2 with
other parameters the same as those in figure 3(a). It can be seen that this mode is
unstable for all non-zero Ma2 and the strongest instability occurs for Ma2 ∼ O(1).
As Ma2 → 0, the growth rate approaches zero and the cutoff wavenumber, beyond
which the growth rate of the mode is negative, seems to tend to a finite value 1.08.
It is emphasized that this type of instability is caused solely by the presence of the
interfacial surfactant, since the effect of the viscosity stratification for m < 1 is always
stabilizing.

Typical neutral stability curves in the (k, m)-plane are shown in figure 4(a, b) for
δ = 1, Ca1 = Ca2 = 1, θ =0.2 and different values of Ma1 and Ma2. In both the figures,
the region to the left-hand side of each curve corresponds to unstable modes, and the
region to the right-hand side side to stable modes, as denoted by U and S, respectively.
Note that, when Ma1 = Ma2 = 0, the flow with equal viscosity is stable and the line
m = 1 does not mean a neutral curve. In addition, the neutral curve doubles back
at k ≈ 0.6, so that all modes at larger wavenumbers are damped. These behaviours
are due to the stabilizing effects of the surface and interfacial tensions – different
from the results of Loewenherz & Lawrence (1989) and Hu et al. (2006) in which
the tensions are completely neglected. For the flow with a surfactant-laden surface
and a clean interface (Ma1 	= 0 and Ma2 = 0) (figure 4a), all curves converge at the
point (k, m) = (0, 1). The flow for m < 1 is stable at all wavenumbers, the same as
the case without surfactants. The curve has a single peak for small Ma1 (e.g. Ma1 = 1
and 2). As Ma1 is increased to 8, the single peak splits into two peaks with one
located near m = 1 and the other around m =10. The cutoff wavenumber decreases
monotonically with Ma1 for typically m < 10, and increases for larger m. Remember
that, as shown in figure 2(b), the inertialess instability is enhanced for sufficiently
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Figure 4. Neutral stability curves in the (k, m)-plane for (a) Ma2 = 0 and different values of
Ma1, and (b) Ma1 = 0 and different values of Ma2. Other parameters are δ = 1, Ca1 = Ca2 = 1
and θ = 0.2. The stable and unstable regions are indicated by S and U, respectively.

large viscosity ratio. Neutral curves for the flow configuration with a free surface and
surfactant-laden interface (Ma1 = 0 and Ma2 	= 0) are shown in figure 4(b). The flow
is unstable for all viscosity ratios. In particular, the instability persists even for m =1,
similar to the instability found by Frenkel & Halpern (2002) and Halpern & Frenkel
(2003). The instability for m < 1 should be due primarily to the interaction between
the surfactant and the interfacial shear, while, for m > 1, an additional mechanism of
the inertialess instability in the absence of the surfactant is also responsible for the
instability. Moreover, the cutoff wavenumber decreases monotonically with m once
the interfacial surfactant is introduced.

We further investigate the effect of the surface surfactant on the instability induced
by the interfacial surfactant for m < 1. The growth rates of the unstable mode for
m =0.4, δ = 1, Ca1 = Ca2 = 1, θ = 0.2 and different values of Ma1 are shown in figure 5.
We set Ma2 to be unity so that a relatively strong instability can be obtained in the
absence of the surface surfactant (see also figure 3b). As expected, the maximum
growth rate is decreased with increasing Ma1 and the instability is weakened. In
addition, the curves for Ma1 > 100 can barely be distinguished from the curve for
Ma1 = 100. This means that the maximum growth rate may tend to a finite value
instead of zero as Ma1 → ∞ different from the results shown in figure 2, where the
growth rate tends to zero. This behaviour is reasonably predicted since the interaction
between the interfacial surfactant and the mean velocity shear is still active, even
though the free surface becomes immobilized for sufficiently large Ma1.

Finally, thanks to the comment and suggestion of a referee, it is of interest to
study the limiting case of Ca1 = Ca2 = ∞ and finite Marangoni terms. The purpose
is to isolate the Marangoni effects from the stabilizing influences of the surface
and interfacial tensions. Accordingly, it is convenient to employ M1 and M2 as
dimensionless parameters instead of Ma1 and Ma2, as in the long-wave analysis (3.2).
The effect of the Marangoni traction on the inertialess instability is illustrated in
figure 6, which shows the variations of the growth rates of the dominant mode as
a function of k parameterized by M1 and M2. The capillary numbers are taken as
Ca1 = Ca2 = ∞, indicating negligible surface and interfacial tension forces compared
to the viscous forces and the Marangoni traction. In the absence of surfactants, the



Effect of surfactants on the stability of two-layer film 505

k

kci

0 0.4 0.8 1.2
–0.01

0

0.01

0.02

0.03

100

0
1

2
4

10

Figure 5. Damping effect of the surface surfactant on the instability induced by the interfacial
surfactant for various values of Ma1. Other parameters are m= 0.4, δ = 1, Ca1 = Ca2 = 1,
Ma2 = 1 and θ = 0.2.
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Figure 6. (a) Effects of surface surfactants on the inertialess instability for various values of
M1 and M2 = 0; the maximum growth rates versus M1 are plotted in the inset. (b) Effects of
interfacial surfactants on the inertialess instability for M1 = 0 and various values of M2. The
capillary numbers Ca1 = Ca2 = ∞ indicating negligible surface and interfacial tension forces.
Other parameters are m= 2.5, δ = 1 and θ =0.2.

growth rates exhibit two peaks, one of which corresponds to relatively long waves
and the other to short waves, as also found by Loewenherz & Lawrence (1989). Note
that the short-wave peak does not occur in the results discussed above owing to the
stabilizing influences of the surface tensions. When the surface surfactant is introduced
(figure 6a), the inertialess instability around the long-wave peaks is stabilized, similar
to the results shown in figure 2(a). This behaviour is reasonable since the effects
of surface tensions on long waves are always weak. Variation of the inertialess
instability around the short-wave peaks indicates that the surface surfactant can be
either stabilizing or destabilizing, as also revealed in the large-m case (see figure 2b).
For clarity, the maximum growth rates as a function of M1 are plotted in the inset
of figure 6(a). The growth rates first increase with M1 and then decreases when M1

is larger than unity approximately. Note that the maximum growth rates tend to a
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finite value as M1 → ∞, indicating that the inertialess instability is present though the
free surface is immobilized. Effects of the interfacial surfactants are demonstrated
in figure 6(b). Again the modification of the long-wave instability is similar to that
shown in figure 3(a) as expected. The variation of the short-wave peak is much more
sensitive to M2. For small values of M2 (e.g. M2 = 0.1), the peak moves upwards and
hence the interfacial surfactants are destabilizing. As M2 increases, the short-wave
peak decreases rapidly and eventually disappears for large M2 (e.g. M2 = 2) together
with the corresponding instability.

4. Conclusions
We have performed a linear stability analysis of a two-layer film flow laden by

insoluble surface and interfacial surfactants in the limit of Stokes flow. Four normal
modes associated with the stability are identified and only one exhibits instability.
The results show that the growth of the unstable mode can be significantly affected
by the surfactants. We first considered the case in which the surface and interfacial
tensions are important so that short-wave instabilities are absent. For the viscosity
ratio m > 1 but not much greater than unity, the effect of a surface surfactant tends
to weaken the growth of the mode responsible for the inertialess instability and
hence plays a stabilizing role on the flow. For m 
 1, the growth rate of the unstable
mode can be enhanced, indicating a destabilizing effect of the surface surfactant, in
contrast to previous findings for surfactant-laden free-surface flow. The presence of
an interfacial surfactant can promote the growth of the unstable mode for m > 1, and
induces a new mode to dominate the instability for m < 1, leading to the occurrence
of the instability for all viscosity ratios. When the surface surfactant is introduced, the
instability caused by the interfacial surfactant for m < 1 is further weakened. For the
case of negligible surface and interfacial tensions, short-wave instabilities can occur
and dominate the flow. When M1 and M2 are small, the short-wave instabilities are
enhanced; whereas it can be weakened by the surface surfactants and completely
suppressed by the interfacial surfactants when M1 and M2 are large.
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